Posts

Showing posts with the label artificialintelligence machinelearning python

Tanh Activation Function

Image
Tanh Activation F unction  is  veritably   analogous  to the sigmoid/ logistic activation  function , and  indeed  has the  same  S-  shape  with the  difference  in  affair   range  of-1 to 1. In Tanh, the  larger  the  input  (  more   positive ), the  near  the  affair   value  will  be  to1.0, whereas the  lower  the  input  (  more   negative ), the  near  the  affair  will  be  to-1.0. Have  a  look  at the  grade  of the tanh activation  function  to  understand  its  limitations . As you can  see  — it  also  faces the  problem  of  evaporating   slants   analogous  to the sigmoid activation  function . Plus the  grade  of the tanh  function  is  important   steeper  as  compared  to the sigmoid  function .

Rectified Linear Units (ReLU) in Deep Learning

Image
  The Rectified Linear Unit is the most commonly used activation function in deep learning models. The function returns 0 if it receives any negative input, but for any positive value   x x  it returns that value back. So it can be written as  f ( x ) = m a x ( 0 , x ) f ( x ) = m a x ( 0 , x ) . Graphically it looks like this It's surprising that such a simple function (and one composed of two linear pieces) can allow your model to account for non-linearities and interactions so well. But the ReLU Activation function works great in most applications, and it is very widely used as a result. Why It Works Introducing Interactions and Non-linearities. Activation functions  serve  two  primary   purposes   1)  Help  a  model   account  for  commerce   goods . What's an interactive  effect ? It's when one variable A affects a  vaticination   else   depending  on the  value  ofB. For  illustration , if my  model   wanted  to  know  whether a  certain   body   weight   indicated