Relu Activation Function(ReLU)





The derivative of ReLU is,

derivative ReLU

A simple python function to mimic the derivative of ReLU function is as follows,

def der_ReLU(x):
  data = [1 if value>0 else 0 for value in x]
  return np.array(data, dtype=float)
ReLU is used extensively currently, but it has some problemslet's say if we've input lower than 0, also it labors zero, and the neural network can not continue the backpropagation algorithm. This problem is generally known as Dying ReLU. To get relieve of this problem we use an extemporized interpretation of ReLU, called Leaky ReLU.

The 
remedied direct activation function (RELU) is a piecewise direct function that, if the input is positive say x, the affair will bex. else, it labors zero.

The fine representation of ReLU Activation Function is, 

The coding logic for the ReLU function is simple,

if input_value > 0:
  return input_value
else:
  return 0

A simple python function to mimic a ReLU function is as follows,

def ReLU(x):
  data = [max(0,value) for value in x]
  return np.array(data, dtype=float)

Comments

Popular posts from this blog

Unleashing Creativity: The Latest Frontier of Animation AI

Tanh Activation Function

Unveiling the Hidden Gems: Exploring Data Mining Functionality